Plan

- I. Interaction particule-matière
- II. Reconstruction des traces chargées
- III. Détection des photons
- IV. Identification des particules

v. Calorimétrie

- 1) Généralités
- 2) Calorimétrie électromagnétique
- 3) Calorimétrie hadronique
- 4) Les divers types de calorimètres
- 5) Exemple du calorimètre à Argon Liquide d'ATLAS

VI. Exemples de détecteurs de physique des hautes énergies

 $\frac{dE}{dx} =$

Rappels

- Un électron/positron (et μ[±] d'énergie > 1 TeV) est courbé par le champ des noyaux : c'est le rayonnement de freinage (ou bremsstrahlung) qui domine à haute énergie
 - Définit la longueur de radiation X_0 (g/cm²)
 - L'énergie critique est l'énergie à laquelle

$$\left. \frac{dE}{dx} \right|_{Collision} = \left. \frac{dE}{dx} \right|_{Rayonnement}$$

- Conversion d'un photon : le mécanisme dominant à haute énergie est la production de paires
- En moyenne, un γ de haute énergie se convertira en e⁺e⁻ après 1 X_o

Principes de la calorimétrie

- Méthode destructive de mesure de l'énergie totale par absorption de la particule incidente à travers une suite de collisions inélastiques qui vont dégrader son énergie
 - Excitation ou ionisation
 - $\Box \Rightarrow$ formation de gerbes électromagnétiques ou hadroniques
 - L'énergie est (partiellement) convertie en un signal proportionnel à l'énergie de la particule incidente
- On appellera absorbeur le milieu qui déclenche la gerbe

- Un calorimètre permet d'apporter de l'information pour toutes les particules qui le traversent :
 - Electrons, photons, hadrons : mesure directe de l'énergie
 - Muons : détection du passage de la particule
 - Neutrinos (par la « mesure » de l'énergie manquante)
- Détecteurs « multi tâches »
 - Mesure de l'énergie
 - Mesure de direction de la trace de la particule incidente
 - Identification des particules : la réponse d'un électron, d'un photon ou d'un muon ne sera pas la même

Plan

- I. Interaction particule-matière
- II. Reconstruction des traces chargées
- III. Détection des photons
- IV. Identification des particules

v. Calorimétrie

- 1) Généralités
- 2) Calorimétrie électromagnétique
- 3) Calorimétrie hadronique
- 4) Les divers types de calorimètres
- 5) Exemple du calorimètre à Argon Liquide d'ATLAS

VI. Exemples de détecteurs de physique des hautes énergies

La forme des gerbes dues aux e[±] et aux γ est différente

P. Puzo, Décembre 2012

$$t_{max} = \frac{\ln \left(E/E_c\right)}{\ln(2)} \qquad N_{total} = \sum_{t=0}^{t_{max}} 2^t = 2^{t_{max}+1} - 1 \approx 2^{t_{max}} 2 = 2 \frac{E}{E_c}$$

- Au delà de t_{max}, les mécanismes dominants sont l'ionisation, l'effet Compton et l'effet photoélectrique
 - Les électrons finissent par s'attacher autour d'un noyau
 - Les positrons finissent par s'annihiler
 avec un électron libre ou peu lié

Développement des gerbes

- Forme longitudinale : $\frac{dE}{dt} \propto t^{\alpha} \exp(-t)$ • Le maximum se trouve à : $t_{max} = \frac{\ln(E/E_c)}{\ln(2)}$
 - □ 95% de la gerbe est contenue dans $t_{95} \approx t_{max} + 0,08 \times Z + 9,6$
 - La dimension longitudinale d'une gerbe croît comme *ln(E)*
- Développement transverse
 - 95% de la gerbe est contenue dans un cône de rayon $2R_m$ (rayon de Molière): $R_m =$
 - $\square R_m s' exprime en g/cm^2 comme X_0$

$$\frac{21 \operatorname{Ivie} \mathbf{v}}{E_c} X_0$$

 $91 M_{\odot} V$

Quelques valeurs typiques

Material	Z	Density	X ₀ [mm]	ρ _M [mm]	dE/dx mip	λ _{int} [mm]
С	6	2.27	188	48	3.95	381
Al	13	2.70	89	44	4.36	390
Fe	26	7.87	17.6	16.9	11.4	168
Cu	29	8.96	14.3	15.2	12.6	151
Sn	50	7.31	12.1	21.6	9.24	223
W	74	19.30	3.5	9.3	22.1	96
Pb	82	11.30	5.6	16	12.7	170
U 238	92	18.95	3.2	10	20.5	105
Concrete		2.50	107	41	4.28	400
Glass		2.23	127	53	3.78	438
Marble		2.93	96	36	4.77	362
Si	14	2.33	93.6	48	3.88	455
Ar (liquid)	18	1.40	140	80	2.13	837
Kr (liquid)	36	2.41	47	55	3.23	607
Xe (liquid)	54	2.95	24	42	3.71	572
Polystyrene		1.032	424	96	2.00	795
Plexiglas		1.18	344	85	2.28	708
Quarz		2.32	117	49	3.94	428
Pb glass		4.06	25.1	35	5.45	330
Air (2C,1atm)		0.0012	304m	74m	0.0022	747m
H ₂ O		1.00	361	92	1.99	849
PbWO ₄		8.3	8.9	20	10.2	207
CeF ₃		6.16	16.8	26	7.9	259
LYSO		7.40	11.4	20.7	9.6	209

Tout est tabulé !

Electron de 100 GeV dans un « verre au plomb » (PbWO₄)
B cm $E_c = 11,8 \text{ MeV}$ $t_{95} \approx 23$ $t_{max} \approx 13$ $X_0 \approx 2 \text{ cm} - R_m \approx 3,6 \text{ cm}$ 46 cm

P. Puzo, Décembre 2012

Remarque sur les résolutions

- Pour connaître la résolution en énergie d'un détecteur, on envoie sur le détecteur des particules d'énergie connues dont on essaye de recouvrir l'énergie
- Les distributions sont typiquement gaussiennes et sont caractérisées par leur largeur σ(E)
- On a besoin de la meilleure résolution possible

Exemple du calorimètre EndCap de ATLAS

P. Puzo, Décembre 2012

0.05

 On a typiquement pour la résolution en énergie :

2 façons d'écrire la même chose

- $\frac{\sigma(E)}{E} = \frac{a}{\sqrt{E}} \bigoplus \frac{c}{E} \bigoplus b$ $\left(\frac{\sigma(E)}{E}\right)^2 = \left(\frac{a}{\sqrt{E}}\right)^2 + \left(\frac{c}{E}\right)^2 + b^2$
- 3 termes caractéristiques
 - a : terme d'échantillonnage
 - b : terme constant (Inhomogénéités non linéarités - mauvaise calibration)

- Résolution en énergie du calorimètre EM d'ATLAS
- c: terme de bruit (Bruit électronique empilement radioactivité)
- Les résolutions spatiales et angulaires ont la même dépendance avec l'énergie de la particule incidente

Signal déposé par les muons

 Les muons déposent également un signal très faible dans le calorimètre électromagnétique puisqu'ils sont ~ au minimum d'ionisation

Plan

- I. Interaction particule-matière
- II. Reconstruction des traces chargées
- III. Détection des photons
- IV. Identification des particules

v. Calorimétrie

- 1) Généralités
- 2) Calorimétrie électromagnétique
- 3) Calorimétrie hadronique
- 4) Les divers types de calorimètres
- 5) Exemple du calorimètre à Argon Liquide d'ATLAS

VI. Exemples de détecteurs de physique des hautes énergies

Calorimétrie hadronique

M. Nessi

hadronique

Les gerbes hadroniques sont très fluctuantes : le dépôt d'énergie n'est pas uniforme

Interaction des hadrons neutres et chargés avec la matière

 Déterminée par des processus nucléaires inélastiques

 Excitation puis création de fragments puis production de particules secondaires multiplicity $\propto \ln(E)$

 $p_t \approx 0.35 \text{ GeV/c}$

• A haute énergie (> 1 GeV), la section efficace dépend peu de l'énergie et du type de la particule incidente (p, K, π , ..):

 $\sigma_{Inel} \approx \sigma_0 A^{0,7}$ avec $\sigma_0 \approx 35 \text{ mb}$

Par analogie avec X_0 , on définit la longueur d'interaction hadronique λ_I par : $\lambda_I = \frac{A}{N_A \sigma_{Inel}} \propto A^{1/3}$

Gerbes hadroniques

- Composante hadronique
 - $\square \quad \pi^{\pm}, p, K^{\pm}, n, \nu, \mu,$
- Composante électromagnétique
 - Photons, π^0

 $n(\pi^0) \approx \ln\left(E_{[GeV]}\right) - 4, 6$

soit ~ 18 π^0 à 100 GeV

- Bien plus complexe à modéliser que les gerbes électromagnétiques
- Grandes fluctuations
 - $\square \Rightarrow$ Résolution en énergie moins bonne que pour les électrons
 - → Moindre exigence sur les performances du calorimètre que pour un calorimètre électromagnétique

Développement des gerbes

Développement longitudinal :

 $t_{95} \approx a \ln(E) + b$

- t₉₅ ≈ 80 cm pour Fe à 100 GeV
- Développement transverse :
 95% de la gerbe est contenue dans un cylindre de rayon λ_I (17 cm pour Fe)

 Les gerbes hadroniques sont plus longues et plus larges que les gerbes électromagnétiques

P. Puzo, Décembre 2012

- λ_I joue le rôle de la longueur de radiation X_0 pour les calorimètres électromagnétiques
- La plupart du temps, on a $\lambda_I \gg X_O$
 - Explique pourquoi les calorimètres hadroniques sont beaucoup plus volumineux que les calorimètres électromagnétiques

Plan

- I. Interaction particule-matière
- II. Reconstruction des traces chargées
- III. Détection des photons
- IV. Identification des particules

v. Calorimétrie

- 1) Généralités
- 2) Calorimétrie électromagnétique
- 3) Calorimétrie hadronique
- 4) Les divers types de calorimètres
- 5) Exemple du calorimètre à Argon Liquide d'ATLAS
- VI. Exemples de détecteurs de physique des hautes énergies

Deux types de calorimètres

- Les calorimètres homogènes pour lesquels l'absorbeur est également le milieu de détection
 - Bonne résolution en énergie
 - Résolution spatiale moyenne
 - Pas de segmentation en profondeur
 - Ne peut servir que pour la calorimétrie EM
- Les calorimètres à échantillonnage (« sampling calorimeters ») pour lesquels l'absorbeur est différent du milieu de détection
 - Résolution en énergie moyenne
 - Bonne résolution spatiale
 - Segmentation en profondeur possible
 - Peut être utilisé en calorimétrie EM et hadronique

155

Calorimètres homogènes

P. Puzo, Décembre 2012

Calorimètre électromagnétique de CMS

Principes et techniques de détection - V

Les divers types de calorimètres

Calorimètres à échantillonnage

Calorimètre électromagnétique d'ATLAS

- LAr (90 K)
- Absorbeurs en Pb (1-2 mm)
- 1 GeV \Rightarrow 5 10⁶ e⁻ dans LAr
- Géométrie en accordéon
- Insensible aux radiations

Les divers types de calorimètres

Calorimètres hadroniques

P. Puzo, Décembre 2012

Principes et techniques de détection - V

Plan

- I. Interaction particule-matière
- II. Reconstruction des traces chargées
- III. Détection des photons
- IV. Identification des particules

v. Calorimétrie

- 1) Généralités
- 2) Calorimétrie électromagnétique
- 3) Calorimétrie hadronique
- 4) Les divers types de calorimètres
- 5) Exemple du calorimètre à Argon Liquide d'ATLAS
- VI. Exemples de détecteurs de physique des hautes énergies

TileCal et Extended TileCal servent au retour de flux du solénoïde

Prérequis

- Aucune bulle !
- Température du bain d'argon : 88.4 K
- Uniformité meilleure que 0.3 K
- Stabilité meilleure que 0.1 K
- Opération continue pendant 10 ou 15 ans
- Pureté meilleure que 2 ppm d'équivalent O₂

Propriétés communes à tous les cryostats

- Deux enceintes concentriques (chaude et froide)
- L'enceinte chaude repose sur des pied en fibre de verre-epoxy (isolation thermique et électrique)
- Les 3 cryostats ont été testés à froid avec les détecteurs en surface au CERN avant d'être descendus dans le puit)
- \Rightarrow 9 cycles thermiques jusqu'à maintenant

<u>Cryostat Barrel (ou tonneau)</u>

- 43 m³ de LAr
- 128000 canaux d'électronique
- Vide d'isolation partagé avec le solénoïde

Cryostat End-Cap (ou bouchon)

- 17 m³ de LAr
- 5000 canaux d'électronique
- Déplacé de 12 m pendant une ouverture d'ATLAS

Cryostat End-Cap

Cryostat Barrel

Propriétés de l'argon liquide

- Stabilité sur des années
- Résistant aux radiations
- Réponse linéaire
- Calorimètre à échantillonnage :
 - ✓ Bonne résolution spatiale (wrt calorimètres homogènes)
 - ✓ Mauvaise résolution en énergie (wrt calorimètres homogènes)

Principales propriétés

- 4 types d'électrode : 2 pour EMB et 2 pour EMEC
- \bullet les électrodes font 275 μm :
 - \checkmark 3 couches de Cu
 - ✓ 2 couches d'isolant (polyimide)
- les deux couches externes sont à la HT
- Le signal est lu sur l'électrode centrale
- 2 ou 3 compartiments en profondeur
- Epaisseur du gap d'argon
 - ✓EMB : 2.1 mm de chaque côté de l'électrode (450 ns de
 - temps de dérive pour 2000 V)
 - ✓EMEC : de 0.9 à 3.1 mm de chaque côté de l'électrode

P. Puzo, Décembre 2012

Propriétés principales

- Absorbeurs en plomb (+ mince couche d'acier)
- Bonne hermiticité (pas de crack en azimut)
- Courbure dans la direction des particules
- 1 GeV déposé donne environ 5 106 électrons
- Plusieurs compartiments en profondeur

<u>EMB</u>

- |η| < 1.475
- Vagues de l'accordéon parallèles à l'axe du faisceau
- Les angles des vagues changent avec le rayon pour garder constant l'épaisseur d'argon

P. Puzo, Décembre 2012

Principes et techniques de dé

Une roue complète du EMB

Prééchantillonneur

• Nécessaire pour corriger l'énergie perdue en amont du calorimètre

(principalement à basse énergie)

• Mince couche LAr instrumentée (11 mm pour EMB et 5 mm pour EMEC) devant

- le 1^{er} compartiment de l'accordéon
- Couverture jusqu'à $|\eta| = 1.8$

Prééchantillonneur EMB

Calorimètre hadronique End-Cap (HEC)

Pripriétés principales

- Insensible aux radiations
- Absorbeurs en Cu (25/50 mm d'épaisseur) à géométrie parallèle plane (25 et 50 mm d'épaisseur)
- 2 x 2 roues (avant et arrière) de diamètre ϕ = 2 m
- \cdot 2 x (2 x 32) modules
- 10 λ_{I}
- 24/16 gaps pour les roues avant/arrière
- 4 compartiments longitudinaux
- Δη x Δφ = 0.1 x 0.1 (0.2 x 0.2 pour |η|>2.5)
- Electronique froide
- Transformateur électrostatique
 - ✓ Réduit les contraintes sur la HT (chaque gap consiste de 4 sous-gaps de 1.85 mm)
 - Lecture de l'électrode centrale uniquement
 - Optimisation du rapport signal/bruit

P. Puzo, Décembre 2012

Principes et techniques de détection - V

Calorimètre hadronique vers l'avant (FCAL)

Propriétés principales

• 2.5 < |η| < 4.9

Résistant aux radiations

• Electrodes en Cu parallèles à l'axe du faisceau

- 2 x 3 roues (1 EM et 2 hadroniques)
 - \checkmark Matrice Cu pour la roue EM (28 X₀, 2.6 λ_{I})
 - \checkmark Matrice W pour les roues hadroniques (3.7 λ_{I} chacune)
- + 10 $\lambda_{\rm I}$ pour l'ensemble du FCAL
- Epaisseur des gaps d'argon liquide : de 250 μm (EM) à 500 μm (hadronique)
- Temps de dérive de 60 ns (65% après 25 ns)
- 3 compartiments longitudinaux
- $\Delta \eta \times \Delta \phi = 0.1 \times 0.1$

• Pas de tracking en amont permettant une séparation électron/photon

• Nécessaire pour asymétrie avant/arrière des Z' lourds couplages électrofaibles - SUSY

Electrode

Matrice du FCAL pendant l'assemblage des électrodes

Function	EM	Hadronic	Hadronic
Mass of module (kg)	2119	3826	3695
Main absorber material	Copper	Tungsten	Tungsten
LAr gap width mm	0.269	0.376	0.508
Radiation length X_0	27.6	91.3	89.2
Absorption length λ	2.66	3.68	3.60
Number of electrodes	12260	10200	8224
Number of read out channels	1008	500	254

Paramètres du FCAL construit

- Le HEC recouvre FCAL1 pour assurer une couverture complète
- Vérifié en faisceau test combinant EMEC, HEC et FCAL

Le calorimètre d'ATLAS à LAr

P. Puzo, Décembre 2012

Principes et techniques de détection - \

Plan

- I. Interaction particule-matière
- II. Reconstruction des traces chargées
- III. Détection des photons
- IV. Identification des particules

v. Calorimétrie

- 1) Généralités
- 2) Calorimétrie électromagnétique
- 3) Calorimétrie hadronique
- 4) Les divers types de calorimètres
- 5) Exemple du calorimètre à Argon Liquide d'ATLAS

VI. Exemples de détecteurs de physique des hautes énergies

 $\frac{dE}{dx} =$

Rappels

- Un électron/positron (et μ[±] d'énergie > 1 TeV) est courbé par le champ des noyaux : c'est le rayonnement de freinage (ou bremsstrahlung) qui domine à haute énergie
 - Définit la longueur de radiation X_0 (g/cm²)
 - L'énergie critique est l'énergie à laquelle

$$\left. \frac{dE}{dx} \right|_{Collision} = \left. \frac{dE}{dx} \right|_{Rayonnement}$$

- Conversion d'un photon : le mécanisme dominant à haute énergie est la production de paires
- En moyenne, un γ de haute énergie se convertira en e⁺e⁻ après 1 X_0
Principes de la calorimétrie

- Méthode destructive de mesure de l'énergie totale par absorption de la particule incidente à travers une suite de collisions inélastiques qui vont dégrader son énergie
 - Excitation ou ionisation
 - $\Box \Rightarrow$ formation de gerbes électromagnétiques ou hadroniques
 - L'énergie est (partiellement) convertie en un signal proportionnel à l'énergie de la particule incidente
- On appellera absorbeur le milieu qui déclenche la gerbe

- Un calorimètre permet d'apporter de l'information pour toutes les particules qui le traversent :
 - Electrons, photons, hadrons : mesure directe de l'énergie
 - Muons : détection du passage de la particule
 - Neutrinos (par la « mesure » de l'énergie manquante)
- Détecteurs « multi tâches »
 - Mesure de l'énergie
 - Mesure de direction de la trace de la particule incidente
 - Identification des particules : la réponse d'un électron, d'un photon ou d'un muon ne sera pas la même

Plan

- I. Interaction particule-matière
- II. Reconstruction des traces chargées
- III. Détection des photons
- IV. Identification des particules

v. Calorimétrie

- 1) Généralités
- 2) Calorimétrie électromagnétique
- 3) Calorimétrie hadronique
- 4) Les divers types de calorimètres
- 5) Exemple du calorimètre à Argon Liquide d'ATLAS

VI. Exemples de détecteurs de physique des hautes énergies

La forme des gerbes dues aux e[±] et aux γ est différente

$$t_{max} = \frac{\ln (E/E_c)}{\ln(2)} \qquad N_{total} = \sum_{t=0}^{t_{max}} 2^t = 2^{t_{max}+1} - 1 \approx 2^{t_{max}} 2 = 2 \frac{E}{E_c}$$

- Au delà de t_{max}, les mécanismes dominants sont l'ionisation, l'effet Compton et l'effet photoélectrique
 - Les électrons finissent par s'attacher autour d'un noyau
 - Les positrons finissent par s'annihiler
 avec un électron libre ou peu lié

Développement des gerbes

- Forme longitudinale : $\frac{dE}{dt} \propto t^{\alpha} \exp(-t)$ • Le maximum se trouve à : $t_{max} = \frac{\ln (E/E_c)}{\ln(2)}$
 - □ 95% de la gerbe est contenue dans $t_{95} \approx t_{max} + 0,08 \times Z + 9,6$
 - La dimension longitudinale d'une gerbe croît comme *ln(E)*
- Développement transverse
 - 95% de la gerbe est contenue dans un cône de rayon $2R_m$ (rayon de Molière): $R_m = \frac{21 \text{ MeV}}{E_c} X_0$
 - $\square R_m s' exprime en g/cm^2 comme X_0$

Dépôt d'énergie longitudinal (ua)

Quelques valeurs typiques

Material	Z	Density	X ₀ [mm]	ρ _M [mm]	dE/dx mip	λ _{int} [mm]
С	6	2.27	188	48	3.95	381
Al	13	2.70	89	44	4.36	390
Fe	26	7.87	17.6	16.9	11.4	168
Cu	29	8.96	14.3	15.2	12.6	151
Sn	50	7.31	12.1	21.6	9.24	223
W	74	19.30	3.5	9.3	22.1	96
Pb	82	11.30	5.6	16	12.7	170
U 238	92	18.95	3.2	10	20.5	105
Concrete		2.50	107	41	4.28	400
Glass		2.23	127	53	3.78	438
Marble		2.93	96	36	4.77	362
Si	14	2.33	93.6	48	3.88	455
Ar (liquid)	18	1.40	140	80	2.13	837
Kr (liquid)	36	2.41	47	55	3.23	607
Xe (liquid)	54	2.95	24	42	3.71	572
Polystyrene		1.032	424	96	2.00	795
Plexiglas		1.18	344	85	2.28	708
Quarz		2.32	117	49	3.94	428
Pb glass		4.06	25.1	35	5.45	330
Air (2C,1atm)		0.0012	304m	74m	0.0022	747m
H ₂ O		1.00	361	92	1.99	849
PbWO ₄		8.3	8.9	20	10.2	207
CeF ₃		6.16	16.8	26	7.9	259
LYSO		7.40	11.4	20.7	9.6	209

Tout est tabulé !

chambre à brouillard

8 cm Electron de 100 GeV dans un « verre au plomb » ($PbWO_4$) □ $E_c = 11,8 \text{ MeV}$ □ $t_{95} \approx 23$ $\Box X_0 \approx 2 \text{ cm} - R_m \approx 3.6 \text{ cm}$ $\Box \quad t_{max} \approx 13$ 46 cm

Remarque sur les résolutions

- Pour connaître la résolution en énergie d'un détecteur, on envoie sur le détecteur des particules d'énergie connues dont on essaye de recouvrir l'énergie
- Les distributions sont typiquement gaussiennes et sont caractérisées par leur largeur σ(E)
- On a besoin de la meilleure résolution possible

Exemple du calorimètre EndCap de ATLAS

 On a typiquement pour la résolution en énergie :

2 façons d'écrire la même chose

- 3 termes caractéristiques
 - a : terme d'échantillonnage
 - b: terme constant (Inhomogénéités non linéarités - mauvaise calibration)

- Résolution en énergie du calorimètre EM d'ATLAS
- c : terme de bruit (Bruit électronique empilement radioactivité)
- Les résolutions spatiales et angulaires ont la même dépendance avec l'énergie de la particule incidente

Signal déposé par les muons

 Les muons déposent également un signal très faible dans le calorimètre électromagnétique puisqu'ils sont ~ au minimum d'ionisation

Plan

- I. Interaction particule-matière
- II. Reconstruction des traces chargées
- III. Détection des photons
- IV. Identification des particules

v. Calorimétrie

- 1) Généralités
- 2) Calorimétrie électromagnétique
- 3) Calorimétrie hadronique
- 4) Les divers types de calorimètres
- 5) Exemple du calorimètre à Argon Liquide d'ATLAS

VI. Exemples de détecteurs de physique des hautes énergies

Calorimétrie hadronique

M. Nessi

hadronique

Les gerbes hadroniques sont très fluctuantes : le dépôt d'énergie n'est pas uniforme

Interaction des hadrons neutres et chargés avec la matière

 Déterminée par des processus nucléaires inélastiques

 Excitation puis création de fragments puis production de particules secondaires multiplicity $\propto \ln(E)$

 $p_t \approx 0.35 \text{ GeV/c}$

• A haute énergie (> 1 GeV), la section efficace dépend peu de l'énergie et du type de la particule incidente (p, K, π , ..) :

 $\sigma_{Inel} \approx \sigma_0 A^{0,7}$ avec $\sigma_0 \approx 35 \text{ mb}$

Par analogie avec X_0 , on définit la longueur d'interaction hadronique λ_I par : $\lambda_I = \frac{A}{N_A \sigma_{Inel}} \propto A^{1/3}$

Gerbes hadroniques

- Composante hadronique
 - $\square \quad \pi^{\pm}, p, K^{\pm}, n, \nu, \mu,$
- Composante électromagnétique
 - Photons, π^0

 $n(\pi^0) \approx \ln\left(E_{[GeV]}\right) - 4, 6$

soit ~ 18 π^0 à 100 GeV

- Bien plus complexe à modéliser que les gerbes électromagnétiques
- Grandes fluctuations
 - $\square \Rightarrow$ Résolution en énergie moins bonne que pour les électrons
 - Moindre exigence sur les performances du calorimètre que pour un calorimètre électromagnétique

Développement des gerbes

Développement longitudinal :

 $t_{95} \approx a \ln(E) + b$

- t₉₅ ≈ 80 cm pour Fe à 100 GeV
- Développement transverse :
 95% de la gerbe est contenue dans un cylindre de rayon λ_I (17 cm pour Fe)

 Les gerbes hadroniques sont plus longues et plus larges que les gerbes électromagnétiques

- λ_I joue le rôle de la longueur de radiation X_0 pour les calorimètres électromagnétiques
- La plupart du temps, on a $\lambda_I \gg X_O$
 - Explique pourquoi les calorimètres hadroniques sont beaucoup plus volumineux que les calorimètres électromagnétiques

Plan

- I. Interaction particule-matière
- II. Reconstruction des traces chargées
- III. Détection des photons
- IV. Identification des particules

v. Calorimétrie

- 1) Généralités
- 2) Calorimétrie électromagnétique
- 3) Calorimétrie hadronique
- 4) Les divers types de calorimètres
- 5) Exemple du calorimètre à Argon Liquide d'ATLAS
- VI. Exemples de détecteurs de physique des hautes énergies

Deux types de calorimètres

- Les calorimètres homogènes pour lesquels l'absorbeur est également le milieu de détection
 - Bonne résolution en énergie
 - Résolution spatiale moyenne
 - Pas de segmentation en profondeur
 - Ne peut servir que pour la calorimétrie EM
- Les calorimètres à échantillonnage (« sampling calorimeters ») pour lesquels l'absorbeur est différent du milieu de détection
 - Résolution en énergie moyenne
 - Bonne résolution spatiale
 - Segmentation en profondeur possible
 - Peut être utilisé en calorimétrie EM et hadronique

Calorimètres homogènes

Calorimètre électromagnétique de CMS

P. Puzo, Décembre 2012

Principes et techniques de détection - VI

Les divers types de calorimètres

Calorimètres à échantillonnage

Calorimètre électromagnétique d'ATLAS

- LAr (90 K)
- Absorbeurs en Pb (1-2 mm)
- 1 GeV \Rightarrow 5 10⁶ e⁻ dans LAr
- Géométrie en accordéon
- Insensible aux radiations

Les divers types de calorimètres

Calorimètres hadroniques

P. Puzo, Décembre 2012

Principes et techniques de détection - VI

Plan

- I. Interaction particule-matière
- II. Reconstruction des traces chargées
- III. Détection des photons
- IV. Identification des particules

v. Calorimétrie

- 1) Généralités
- 2) Calorimétrie électromagnétique
- 3) Calorimétrie hadronique
- 4) Les divers types de calorimètres
- 5) Exemple du calorimètre à Argon Liquide d'ATLAS
- VI. Exemples de détecteurs de physique des hautes énergies

TileCal et Extended TileCal servent au retour de flux du solénoïde

Prérequis

- Aucune bulle !
- Température du bain d'argon : 88.4 K
- Uniformité meilleure que 0.3 K
- Stabilité meilleure que 0.1 K
- Opération continue pendant 10 ou 15 ans
- Pureté meilleure que 2 ppm d'équivalent O₂

Propriétés communes à tous les cryostats

- Deux enceintes concentriques (chaude et froide)
- L'enceinte chaude repose sur des pied en fibre de verre-epoxy (isolation thermique et électrique)
- Les 3 cryostats ont été testés à froid avec les détecteurs en surface au CERN avant d'être descendus dans le puit)
- \Rightarrow 9 cycles thermiques jusqu'à maintenant

<u>Cryostat Barrel (ou tonneau)</u>

- 43 m³ de LAr
- 128000 canaux d'électronique
- Vide d'isolation partagé avec le solénoïde

Cryostat End-Cap (ou bouchon)

- 17 m³ de LAr
- 5000 canaux d'électronique
- Déplacé de 12 m pendant une ouverture d'ATLAS

Cryostat End-Cap

Cryostat Barrel

Propriétés de l'argon liquide

- Stabilité sur des années
- Résistant aux radiations
- Réponse linéaire
- Calorimètre à échantillonnage :
 - ✓ Bonne résolution spatiale (wrt calorimètres homogènes)
 - ✓ Mauvaise résolution en énergie (wrt calorimètres homogènes)

Principales propriétés

- 4 types d'électrode : 2 pour EMB et 2 pour EMEC
- \bullet les électrodes font 275 μm :
 - \checkmark 3 couches de Cu
 - ✓ 2 couches d'isolant (polyimide)
- les deux couches externes sont à la HT
- Le signal est lu sur l'électrode centrale
- 2 ou 3 compartiments en profondeur
- Epaisseur du gap d'argon
 - ✓EMB : 2.1 mm de chaque côté de l'électrode (450 ns de
 - temps de dérive pour 2000 V)
 - ✓EMEC : de 0.9 à 3.1 mm de chaque côté de l'électrode

Electrode Barrel avant pliage

Propriétés principales

- Absorbeurs en plomb (+ mince couche d'acier)
- Bonne hermiticité (pas de crack en azimut)
- Courbure dans la direction des particules
- 1 GeV déposé donne environ 5 106 électrons
- Plusieurs compartiments en profondeur

<u>EMB</u>

- |η| < 1.475
- Vagues de l'accordéon parallèles à l'axe du faisceau
- Les angles des vagues changent avec le rayon pour garder constant l'épaisseur d'argon

P. Puzo, Décembre 2012

Principes et techniques de dét

Une roue complète du EMB

Prééchantillonneur

• Nécessaire pour corriger l'énergie perdue en amont du calorimètre

(principalement à basse énergie)

• Mince couche LAr instrumentée (11 mm pour EMB et 5 mm pour EMEC) devant

- le 1^{er} compartiment de l'accordéon
- Couverture jusqu'à $|\eta| = 1.8$

Prééchantillonneur EMB

Calorimètre hadronique End-Cap (HEC)

Pripriétés principales

- Insensible aux radiations
- Absorbeurs en Cu (25/50 mm d'épaisseur) à géométrie parallèle plane (25 et 50 mm d'épaisseur)
- 2 x 2 roues (avant et arrière) de diamètre ϕ = 2 m
- \cdot 2 x (2 x 32) modules
- 10 λ_{I}
- 24/16 gaps pour les roues avant/arrière
- 4 compartiments longitudinaux
- Δη x Δφ = 0.1 x 0.1 (0.2 x 0.2 pour |η|>2.5)
- Electronique froide
- Transformateur électrostatique
 - ✓ Réduit les contraintes sur la HT (chaque gap consiste de 4 sous-gaps de 1.85 mm)
 - Lecture de l'électrode centrale uniquement
 - Optimisation du rapport signal/bruit

P. Puzo, Décembre 2012

Principes et techniques de détection - VI

Calorimètre hadronique vers l'avant (FCAL)

Propriétés principales

• 2.5 < |η| < 4.9

Résistant aux radiations

• Electrodes en Cu parallèles à l'axe du faisceau

- 2 x 3 roues (1 EM et 2 hadroniques)
 - \checkmark Matrice Cu pour la roue EM (28 X₀, 2.6 λ_{I})
 - \checkmark Matrice W pour les roues hadroniques (3.7 λ_{I} chacune)
- + 10 $\lambda_{\rm I}$ pour l'ensemble du FCAL
- Epaisseur des gaps d'argon liquide : de 250 μm (EM) à 500 μm (hadronique)
- Temps de dérive de 60 ns (65% après 25 ns)
- 3 compartiments longitudinaux
- $\Delta \eta \times \Delta \phi = 0.1 \times 0.1$

• Pas de tracking en amont permettant une séparation électron/photon

• Nécessaire pour asymétrie avant/arrière des Z' lourds couplages électrofaibles - SUSY

Electrode

Matrice du FCAL pendant l'assemblage des électrodes

Function	EM	Hadronic	Hadronic
Mass of module (kg)	2119	3826	3695
Main absorber material	Copper	Tungsten	Tungsten
LAr gap width mm	0.269	0.376	0.508
Radiation length X_0	27.6	91.3	89.2
Absorption length λ	2.66	3.68	3.60
Number of electrodes	12260	10200	8224
Number of read out channels	1008	500	254

Paramètres du FCAL construit

- Le HEC recouvre FCAL1 pour assurer une couverture complète
- Vérifié en faisceau test combinant EMEC, HEC et FCAL

Le calorimètre d'ATLAS à LAr

Principes et techniques de détection - V

Plan

- I. Interaction particule-matière
- II. Reconstruction des traces chargées
- III. Détection des photons
- IV. Identification des particules
- v. Calorimétrie
- VI. Exemples de détecteurs de Physique des Hautes Energies
 - 1) Détecteurs sur collisionneur
 - 2) Détecteurs de neutrinos
 - 3) Autres types de détecteurs

Rappels

- Certaines mesures sont destructives, d'autres pas
- Toutes les particules ne laissent pas de trace dans les couches internes (les neutrinos n'en laissent aucune et sont détectés par leur énergie transverse manquante)

Comment faire un détecteur sur un collisionneur ?

- On vient de voir comment remplir chaque fonction (identification des particules, mesure de l'énergie, de la masse, de la charge)
- Il reste à intégrer l'ensemble des « sous-détecteurs » dans un détecteur global
- Principales options :
 - Position du solénoïde wrt les calorimètres
 - □ Forme (octogonale, cylindrique, ...)

Les deux types de détecteurs

 Détecteur sur collisionneur (4π multi purpose detector)

- Couverture maximale de l'acceptance
- Difficultés d'accès (maintenance)
- Exemples :
 - Expériences LEP, LHC, Tevatron, H1, Babar, ...

 Détecteur sur cible fixe (spectromètre magnétique)

- Couverture partielle de l'angle solide
- Accès beaucoup plus simple
- Exemples :
 - NA49, LHCb
Détecteurs symétriques : le référentiel du centre de masse est au repos dans le laboratoire

 Détecteurs asymétriques : le référentiel du centre de masse est en mouvement dans le laboratoire

- Exemples :
 - Particules identiques (à la charge près) d'énergie identique : LEP, LHC, Tevatron
- Exemples :
 - Particules identiques d'énergie différentes : Babar
 - Particules différentes : H1

Détecteurs sur collisionneur

Les diverses configurations de systèmes magnétiques sur collisionneur

Champ solénoïdal

- B élevé à l'intérieur
- Exemples :
 - DELPHI (SC 1,2 T)
 - □ L3 (NC 0,5 T)
 - □ CMS (SC 4 T)

 Combinaison d'un champ solénoïdal et d'un champ toroïdal

- Le champ peut être plus faible à l'intérieur car un champ extérieur courbe les muons
- Exemple :
 - □ D0 (SC 2 T ⊕ 2 T)
 - □ ATLAS (SC 2 T \oplus 0,6 T)

Les détecteurs LHC

- Les détecteurs généralistes du LHC (ATLAS et CMS) nécessitent un tracking performant pour les muons
 - Les spectromètres à muons sont de dimensions inégalées
 - Très bonne résolution spatiale

Une série d'évènements dans CMS

Exemple d'ATLAS : détecteur interne

Pixels
Silicon Tracker (SCT)
Transition Radiation Tracker (TRT)
7 10⁷ canaux
6 10⁶ canaux
4 10⁵ canaux

- Grande couverture ($|\eta| < 4.9$)
 - ✓ EM: Pb-LAr ⊕ Cu-LAr
 - ✓ Hadronique: Fibres scintillantes + Cu/W-LAr

Plusieurs calorimètres à échantillonnage sont disposés autour de l'axe du faisceau

Exemple d'ATLAS : système magnétique

Paramètres du toroïde End-Cap Longueur : 5.0 m Diamètre externe : 10.7 m 2 x 8 bobines Energie stockée : 2 x 0.25 GJ

Paramètres communs à tous les <u>toroïdes</u> Supraconducteur à 4 T Champ vu par les particules : 0.6-1.5 T Courant nominal : 20.5 kA Point de fonctionnement : 4.7 K

Paramètres du toroïde Barrel Longueur : 25.3 m Diamètre externe : 20.1 m 8 bobines Energie stockée : 1.08 GJ

CMS

« Compact » car L x l = 22 m x 15 m wrt ATLAS (44 m x 22 m) - 14500 t

	ATLAS	CMS
Détecteur Interne	Silicium (pixels+strips) et rayonnement de transition (TRT)	Silicium (pixels+strips)
Calorimètre électromagnétique	Calorimètre à échantillonnage (Pb + LAr)	Calorimètre homogène (PbWO ₄)
Calorimètre hadronique	Calorimètres à échantillonnage (fer + tuiles scintillantes dans la partie centrale, Cu et W + LAr vers l'avant)	Calorimètres à échantillonnage (acier et Cu + tuiles scintillantes)
Détecteur à muons	Chambres à muons à l'extérieur du calorimètre hadronique	Chambres à muons dans le retour de flux du solénoïde
Système magnétique	Solénoïde de 2 T, toroïde à air d'environ 2 T	Solénoïde de 4 T

Plan

- I. Interaction particule-matière
- II. Reconstruction des traces chargées
- III. Détection des photons
- IV. Identification des particules
- v. Calorimétrie
- VI. Exemples de détecteurs de Physique des Hautes Energies
 - 1) Détecteurs sur collisionneur
 - 2) Détecteurs de neutrinos
 - 3) Autres types de détecteurs

SuperKamiokande

- Détecteur de neutrinos (solaires ou d'un faisceau issu d'un accélérateur) qui vont interagir avec un noyau d'oxygène (50000 t d'eau pure)
- 11200 photomultiplicateurs (diamètre 45 cm)

P. Puzo, Décembre 2012

Principes et techniques de détection - VI

M. Nessi

- Le lepton (e⁻ ou μ) dépend du type de neutrino incident
 - On mesure ces propriétés par le rayonnement Cherenkov qu'il émet dans l'eau

Neutrino solaire (12,5 MeV)

P. Puzo, Décembre 2012

Principes et techniques de détection - VI

Détecteurs de neutrinos

Mesure de neutrinos dans le lac Baikal

1^{ère} expérience à laisser ses détecteurs un an en fonctionnement (depuis 1993). Installation pendant l'hiver, sur la glace

AMANDA

- AMANDA = Antartic Muon And Neutrino Detector Array (1993-2005)
 - Détecteurs entre 800 et 1000 m
 - Collision d'un v montant avec un proton de H_2O : création d'un muon
 - Observe la lumière Cherenkov due au muon qui zigzague à cause des bulles d'air contenues dans la glace
- IceCube = Successeur d'AMANDA : 80 lignes de détecteur sur 1 km³ installées entre 2005 et 2001
 - Chaque ligne comprend 60 PM orientés vers le bas, entre 1450 et 2450 m de profondeur
 - Budget : 272 M\$ (AMANDA : 1 M\$)

ANTARES

- ANTARES = Astronomy with a Neutrino Telescope and Abyss environmental RESearch
- Détecteur occupant 200x200 m² à
 2500 m au large de La Seyne sur Mer

C. Racca, IReS

P. Puzo, Décembre 2012

Principes et techniques de détection - VI

Plan

- I. Interaction particule-matière
- II. Reconstruction des traces chargées
- III. Détection des photons
- IV. Identification des particules
- v. Calorimétrie
- VI. Exemples de détecteurs de Physique des Hautes Energies
 - 1) Détecteurs sur collisionneur
 - 2) Détecteurs de neutrinos
 - 3) Autres types de détecteurs

NEMO

- Neutrino Experiment with Molybdène
- Recherche une nouvelle forme de radioactivité : l'émisson spontanée de 2 électrons par un noyau (double-β)
- Feuilles minces de Mo entourées de 6000 scintillateurs et 2000 compteurs Geiger pour mesurer les propriétés des électrons

Observatoire Pierre Auger

- Détection et étude des rayons cosmiques dont les énergies sont voisines de 10¹⁹ eV (coupure GZK)
- L'impact au sol de ces gerbes atmosphériques est réparti sur ~ 10 km²
- Trois détecteurs Cherenkov autour de chacune des 1600 cuves à eau réparties sur 3500 km²
- 4 télescopes pour mesurer la fluorescence des molécules de l'air (la nuit uniquement)

AMS

- Alpha Magnetic Spectrometer (AMS)
- Mesure du flux de cosmiques chargés en dehors de l'atmosphère
- Combine des détecteurs de toute sorte dans l'ISS (TOF, tracker, RICH, calorimètre électromagnétique)
- Prototype lancé (et récupéré) en 1998
- Lancement au printemps 2011

Conclusions

- La plupart du temps, on mesure dE/dx
 - Simplicité de certains détecteurs
 - Complexité et ingéniosité d'autres
- Dans tous les cas, ils sont optimisés globalement (mécanique + électronique + système d'acquisition + système de reconstruction) et s'insèrent un ensemble plus grand
 La redondance des informations est souvent une qualité
- Leur taille augmente généralement avec l'énergie (le prix également)
- Désolé si j'ai été partial. Il a fallu faire des choix..